https://nova.newcastle.edu.au/vital/access/ /manager/Index en-au 5 ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:35648 -/-) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of a9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the a9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from a9-/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of a9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of a9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted efferent mechanism for altering hair cell membrane potential and decreasing membrane resistance that should reduce sensitivity to hair bundle displacements.]]> Fri 18 Aug 2023 10:20:28 AEST ]]> Aged mice are less susceptible to motion sickness and show decreased efferent vestibular activity compared to young adults https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:53582 Fri 08 Dec 2023 15:47:54 AEDT ]]>